Sains Malaysiana 54(5)(2025): 1393-1403
http://doi.org/10.17576/jsm-2025-5405-15
Physicochemical Properties of Silicate- and Oleate-
Nanoparticles for Heavy Metal Removal Applications
(Sifat Fizikokimia bagi Nanozarah Silikat dan Oleat untuk Aplikasi Penyingkiran Logam Berat)
NORA’AINI
ALI1, LAILI CHE ROSE2,*, NUR
RAFIQAH ABDUL RAZAK2, NURUL SYAHIRAH AZMAN1, NORHAFIZA
ILYANA YATIM3 & NOR AZMAN KASAN3
1Faculty of Ocean Engineering
Technology, University Malaysia Terengganu, 21030 Kuala Nerus,
Terengganu, Malaysia
2Faculty of Science and Marine
Environment, Universiti Malaysia Terengganu, 21030
Kuala Nerus, Terengganu, Malaysia
3Higher Institution Centre of
Excellence (HICoE), Institute of Tropical Aquaculture
and Fisheries, Universiti Malaysia Terengganu, 21030,
Kuala Nerus, Terengganu, Malaysia
Diserahkan: 3
September 2024/Diterima: 4 Februari 2025
Abstract
Utilizing magnetic nanoparticles (MN) to extract heavy metal
ions from wastewater is a promising method for metal recovery and can reduce secondary
waste production. The objective of this study was to evaluate the changes in
physicochemical characteristics of silicate-nanoparticles (MNs-SiO) and oleate-nanoparticles (MNs-C-COOH) prepared via the
biocompatible W/O microemulsion technique. The characteristics and properties
of MNs-SiO and MNs-C-COOH nanoparticles were
investigated by Scanning Electron Microscope (SEM), Fourier Transform Infrared
(FTIR), X-ray Diffraction (XRD), and Vibrating-sample magnetometer (VSM). The
performance of this nanoparticles (MNs-SiO), and
(MNs-C-COOH) (MNs-SiO), and (MNs-C-COOH) as adsorbents
were evaluated for removal of selected heavy metal ions, nickel (Ni2+),
manganese (Mn2+) and lead (Pb2+) at different
modification agent and pH. It was found that MNs-SiO adsorbent was highly favourable towards Pb2+ (673.4 mg/g) at pH 3, followed by Mn2+ (544.8
mg/g) and Ni2+ (182.43 mg/g) at pH 7, respectively. The MNs-C-COOH
adsorbent indicated the high adsorption of Ni2+, which was 254 mg/g
at pH 6. For commercial magnetic nanoparticles adsorbent, showed high selection
towards Pb2+, 660.13 mg/g at pH 6 and other ions showed less than 5%
removal. The performance of modifying agents can be explored as their
performance is significantly better than commercial magnetic nanoparticle
adsorbents, which can potentially be used in wastewater treatment or recovery
of targeted heavy metal ions.
Keywords: Adsorbent; adsorption
capacity; microemulsion technique; nanoparticles; oleate-magnetic;
silicate-magnetic
Abstrak
Penggunaan nanozarah magnetik (MN) untuk pengekstrakan ion logam berat daripada air sisa adalah kaedah yang berpotensi kerana menawarkan kelebihan seperti pemisahan yang mudah, penjanaan semula, kemungkinan pemulihan logam dan pengurangan penjanaan sisa sekunder. Objektif kajian ini adalah untuk menilai keberkesanan dan potensi nanozarah silikat-magnet terubah suai (MNs-SiO) dan nanozarah oleat-magnet (MNs-C-COOH) telah disediakan melalui teknik mikroemulsi W/O keserasian bio. Ciri dan sifat nanozarah besi oksida magnet yang diubah suai telah dikaji oleh mikroskopi elektron penskanan (SEM), Fourier Transformasi Inframerah (FTIR), X-ray Difraction (XRD) dan Vibrating-sample
magnetometer (VSM). Prestasi penjerap magnet yang diubah suai dinilai untuk penyingkiran ion logam berat terpilih, nikel (Ni2+), mangan (Mn2+) dan plumbum (Pb2+) pada agen pengubah suai dan pH yang berbeza. Didapati bahawa penjerap MNs-SiO adalah bersesuaian terhadap Pb2+ (673.4 mg/g) pada pH 3, diikuti oleh Mn2+ (544.8 mg/g) dan Ni2+ (182.43 mg/g) masing-masing pada pH 7. Penjerap MNs-C-COOH menunjukkan penjerapan Ni2+ yang tinggi, iaitu 254 mg/g pada pH 6. Bagi penjerap nanozarah komersial, menunjukkan selektif tinggi terhadap Pb2+,
660.13 mg/g pada pH 6 dan ion-ion lain menunjukkan penyingkiran kurang daripada 5%. Prestasi agen pengubahsuai boleh diterokai kerana prestasinya jauh lebih baik daripada penjerap nanozarah komersial yang berpotensi untuk digunakan sebagai rawatan air sisa atau pemulihan ion logam berat yang disasarkan.
Kata kunci: Kapasiti penjerapan; nanozarah; oleat-magnetik; penjerap; silikat-magnetik; teknik mikroemulsi
RUJUKAN
Abdelbasir, S.M., Elseman, A.M., Harraz, F.A., Ahmed, Y.M.Z., El-Sheikh, S.M. & Rashad,
M.M. 2021. Superior UV-light photocatalysts of nano-crystalline (Ni or Co) FeWO4:
structure, optical characterization and synthesis by a microemulsion method. New
Journal of Chemistry 45(6): 3150-3159.
Allahkarami, E., Soleimanpour Moghadam, N., Jamrotbe, B. & Azadmehr, A. 2023. Competitive
adsorption of Ni(II) and Cu(II) ions from aqueous solution by
vermiculite-alginate composite: Batch and fixed-bed column studies. Journal
of Dispersion Science and Technology 44(8): 1402-1412.
Bandar, S., Anbia,
M. & Salehi, S. 2021. Comparison of MnO2 modified and unmodified
magnetic Fe3O4 nanoparticle adsorbents and their
potential to remove iron and manganese from aqueous media. Journal of Alloys
and Compounds 851: 156822.
Burnase, N., Jaiswal, S. & Barapatre,
A. 2022. Metal toxicity in humans associated with their occupational exposures
due to mining. In Medical Geology in Mining, edited by Randive, K., Pingle, S., Agnihotri, A. Springer Geology. pp. 127-186.
Chin, A.B. & Yaacob, I.I. 2007.
Synthesis and characterization of magnetic iron oxide nanoparticles via w/o
microemulsion and Massart’s procedure. Journal of
Materials Processing Technology 191(1): 235-237.
Das, A., Bar, N. & Das, S.K.
2023. Adsorptive removal of Pb(II) ion on Arachis hypogaea’s shell: Batch experiments, statistical, and GA
modeling. International Journal of Environmental Science and Technology 20(1): 537-550.
de Magalhães, L.F., da Silva, G.R.,
Peres, A.E.C. & Kooh M.R.R. 2022. Zeolite
Application in Wastewater Treatment. Adsorption Science & Technology (9):
2022. doi:10.1155/2022/4544104
Garg, R., Garg, R., Khan, M.A.,
Bansal, M. & Garg, V.K. 2023. Utilization of biosynthesized silica-supported
iron oxide nanocomposites for the adsorptive removal of heavy metal ions from
aqueous solutions. Environmental Science and Pollution Research 30: 81319-81332.
Germanos, G., Youssef, S., Farah,
W., Lescop, B., Rioual, S.
& Abboud, M. 2020. The impact of magnetite nanoparticles on the
physicochemical and adsorption properties of magnetic alginate beads. Journal
of Environmental Chemical Engineering 8(5): 104223.
Geroeeyan, A., Niazi, A. & Konoz, E. 2021. Removal of basic
orange 2 dye and Ni2+ from aqueous solutions using alkaline-modified nanoclay. Water Science and Technology 83(9):
2271-2286.
Hu, J., Chen, G. & Lo, I.M.C.
2005. Removal and recovery of Cr(VI) from wastewater by maghemite
nanoparticles. Water Research 39(18): 4528-4536.
Ibrahim, G.M., Alshahrani,
S.M., Alosaimi, E.H., Alshahrani,
W.A., El-Gammal, B., Fawzy, A., Alqarni, N., Elhouichet, H. & Safaa, H.M. 2024. Adsorption mechanism
elucidation of anionic congo red onto modified
magnetic nanoparticle structures by quantum chemical and molecular dynamics. Journal
of Molecular Structure 1298(Part 1): 13992.
Kalra, A. & Gupta, A. 2019.
Recent advances in decolourization of dyes using iron
nanoparticles: A mini review. Materials Today: Proceedings 36: 689-696.
Khan, J., Lin, S., Nizeyimana, J.C., Wu, Y., Wang, Q. & Liu, X. 2021.
Removal of copper ions from wastewater via adsorption on modified hematite
(α-Fe2O3) iron oxide coated sand. Journal of
Cleaner Production 319: 128687.
Lei, T., Jiang, X., Zhou, Y., Chen,
H., Bai, H., Wang, S. & Yang, X. 2023. A multifunctional adsorbent based on
2,3-dimercaptosuccinic acid/dopamine-modified magnetic iron oxide nanoparticles
for the removal of heavy-metal ions. Journal of Colloid and Interface
Science 636: 153-166.
Liosis, C., Papadopoulou, A., Karvelas, E., Karakasidis,
T.E. & Sarris, I.E. 2021. Heavy metal adsorption using magnetic
nanoparticles for water purification: A critical review. Materials 14(24): 7500.
Mahapatra, A., Mishra, B.G. &
Hota, G. 2013. Electrospun Fe2O3-Al2O3 nanocomposite fibers as efficient adsorbent for removal of heavy metal ions
from aqueous solution. Journal of Hazardous Materials 258-259: 116-123.
Mahdavi, M., Ahmad, M. Bin, Haron,
M.J., Namvar, F., Nadi, B., Ab Rahman, M.Z. & Amin, J. 2013. Synthesis,
surface modification and characterisation of
biocompatible magnetic iron oxide nanoparticles for biomedical applications. Molecules 18(7): 7533-7548.
Mehdizadeh, S., Sadjadi, S., Ahmadi,
S.J. & Outokesh, M. 2014. Removal of heavy metals
from aqueous solution using platinum nanoparticles/Zeolite-4A. Journal of
Environmental Health Science and Engineering 12: 7.
Meng, C., Zhikun,
W., Qiang, L., Chunling, L., Shuangqing,
S. & Songqing, H. 2018. Preparation of
amino-functionalized Fe3O4@mSiO2 core-shell
magnetic nanoparticles and their application for aqueous Fe3+ removal. Journal of Hazardous Materials 341: 198-206.
Mengesha, A., Hoerres,
A. & Mahajan, P. 2022. Cytocompatibility of oleic acid modified iron oxide
nanoparticles. Materials Letters 323: 132528.
Mostafa, M.G., Chen, Y.H., Jean,
J.S., Liu, C.C. & Lee, Y.C. 2011. Kinetics and mechanism of arsenate
removal by nanosized iron oxide-coated perlite. Journal of Hazardous
Materials 187(1-3): 89-95.
Naseem, T. & Durrani, T. 2021.
The role of some important metal oxide nanoparticles for wastewater and
antibacterial applications: A review. Environmental Chemistry and
Ecotoxicology 3: 59-75.
Nassef, H.M., Al-Hazmi, G.A.A.M., Alayyafi, A.A.A., El-Desouky,
M.G. & El-Bindary, A.A. 2024. Synthesis and
characterization of new composite sponge combining of metal-organic framework
and chitosan for the elimination of Pb(II), Cu(II) and Cd(II) ions from aqueous
solutions: Batch adsorption and optimization using Box-Behnken design. Journal
of Molecular Liquids 394: 123741.
O’Neal, S.L. & Zheng, W. 2015.
Manganese toxicity upon overexposure: A decade in review. Current Environmental
Health Reports 2(3): 315-328.
Rafiq, S., Wongrod,
S. & Vinitnantharat, S. 2023. Adsorption kinetics
of cadmium and lead by biochars in single- and bisolute brackish water systems. ACS Omega 8(48):
45262-45276.
Rose, L.C., Suhaimi, H., Mamat, M.
& Lik, T.Z. 2017. Synthesis and characterization
of oleic acid surface modified magnetic iron oxide nanoparticles by using
biocompatible w/o microemulsion for heavy metal removal. AIP Conference
Proceedings 1885: 020113.
Storozhuk, L. & Iukhymenko, N. 2019.
Iron oxide nanoparticles modified with silanes for hyperthermia applications. Applied
Nanoscience (Switzerland) 9(5): 889-898.
Sukmana, H., Bellahsen, N., Pantoja, F.
& Hodur, C. 2021. Adsorption and coagulation in wastewater treatment –
Review. Progress in Agricultural Engineering Sciences 17(1): 49-68.
Xu, P., Zeng, G.M., Huang, D.L.,
Feng, C.L., Hu, S., Zhao, M.H., Lai, C., Wei, Z., Huang, C., Xie, G.X. &
Liu, Z.F. 2012. Use of iron oxide nanomaterials in wastewater treatment: A
review. Science of the Total Environment 424: 1-10.
Yang, Z., Ma, J., Liu, F., Zhang,
H., Ma, X. & He, D. 2022. Mechanistic insight into pH-dependent adsorption
and coprecipitation of chelated heavy metals by in-situ formed iron
(oxy)hydroxides. Journal of Colloid and Interface Science 608(Part 1):
864-872.
Zhou, C., Li, B., Li, Y., Zhao, J.,
Mei, Q., Wu, Y., Chen, Y., Li, M. & Fan, Y. 2024. A review of graphene
oxide-based adsorbents for removing lead ions in water. Journal of
Environmental Chemical Engineering 12(1): 111839.
*Pengarang untuk surat-menyurat;
email: hafiza.ilyana@umt.edu.my