Sains Malaysiana 54(5)(2025): 1393-1403

http://doi.org/10.17576/jsm-2025-5405-15

 

Physicochemical Properties of Silicate- and Oleate- Nanoparticles for Heavy Metal Removal Applications

(Sifat Fizikokimia bagi Nanozarah Silikat dan Oleat untuk Aplikasi Penyingkiran Logam Berat)

 

NORA’AINI ALI1, LAILI CHE ROSE2,*, NUR RAFIQAH ABDUL RAZAK2, NURUL SYAHIRAH AZMAN1, NORHAFIZA ILYANA YATIM3 & NOR AZMAN KASAN3

 

1Faculty of Ocean Engineering Technology, University Malaysia Terengganu, 21030 Kuala Nerus, Terengganu, Malaysia

2Faculty of Science and Marine Environment, Universiti Malaysia Terengganu, 21030 Kuala Nerus, Terengganu, Malaysia

3Higher Institution Centre of Excellence (HICoE), Institute of Tropical Aquaculture and Fisheries, Universiti Malaysia Terengganu, 21030, Kuala Nerus, Terengganu, Malaysia

 

Diserahkan: 3 September 2024/Diterima: 4 Februari 2025

 

Abstract

Utilizing magnetic nanoparticles (MN) to extract heavy metal ions from wastewater is a promising method for metal recovery and can reduce secondary waste production. The objective of this study was to evaluate the changes in physicochemical characteristics of silicate-nanoparticles (MNs-SiO) and oleate-nanoparticles (MNs-C-COOH) prepared via the biocompatible W/O microemulsion technique. The characteristics and properties of MNs-SiO and MNs-C-COOH nanoparticles were investigated by Scanning Electron Microscope (SEM), Fourier Transform Infrared (FTIR), X-ray Diffraction (XRD), and Vibrating-sample magnetometer (VSM). The performance of this nanoparticles (MNs-SiO), and (MNs-C-COOH) (MNs-SiO), and (MNs-C-COOH) as adsorbents were evaluated for removal of selected heavy metal ions, nickel (Ni2+), manganese (Mn2+) and lead (Pb2+) at different modification agent and pH. It was found that MNs-SiO adsorbent was highly favourable towards Pb2+ (673.4 mg/g) at pH 3, followed by Mn2+ (544.8 mg/g) and Ni2+ (182.43 mg/g) at pH 7, respectively. The MNs-C-COOH adsorbent indicated the high adsorption of Ni2+, which was 254 mg/g at pH 6. For commercial magnetic nanoparticles adsorbent, showed high selection towards Pb2+, 660.13 mg/g at pH 6 and other ions showed less than 5% removal. The performance of modifying agents can be explored as their performance is significantly better than commercial magnetic nanoparticle adsorbents, which can potentially be used in wastewater treatment or recovery of targeted heavy metal ions.

Keywords: Adsorbent; adsorption capacity; microemulsion technique; nanoparticles; oleate-magnetic; silicate-magnetic

 

Abstrak

Penggunaan nanozarah magnetik (MN) untuk pengekstrakan ion logam berat daripada air sisa adalah kaedah yang berpotensi kerana menawarkan kelebihan seperti pemisahan yang mudah, penjanaan semula, kemungkinan pemulihan logam dan pengurangan penjanaan sisa sekunder. Objektif kajian ini adalah untuk menilai keberkesanan dan potensi nanozarah silikat-magnet terubah suai (MNs-SiO) dan nanozarah oleat-magnet (MNs-C-COOH) telah disediakan melalui teknik mikroemulsi W/O keserasian bio. Ciri dan sifat nanozarah besi oksida magnet yang diubah suai telah dikaji oleh mikroskopi elektron penskanan (SEM), Fourier Transformasi Inframerah (FTIR), X-ray Difraction (XRD) dan Vibrating-sample magnetometer (VSM). Prestasi penjerap magnet yang diubah suai dinilai untuk penyingkiran ion logam berat terpilih, nikel (Ni2+), mangan (Mn2+) dan plumbum (Pb2+) pada agen pengubah suai dan pH yang berbeza. Didapati bahawa penjerap MNs-SiO adalah bersesuaian terhadap Pb2+ (673.4 mg/g) pada pH 3, diikuti oleh Mn2+ (544.8 mg/g) dan Ni2+ (182.43 mg/g) masing-masing pada pH 7. Penjerap MNs-C-COOH menunjukkan penjerapan Ni2+ yang tinggi, iaitu 254 mg/g pada pH 6. Bagi penjerap nanozarah komersial, menunjukkan selektif tinggi terhadap Pb2+, 660.13 mg/g pada pH 6 dan ion-ion lain menunjukkan penyingkiran kurang daripada 5%. Prestasi agen pengubahsuai boleh diterokai kerana prestasinya jauh lebih baik daripada penjerap nanozarah komersial yang berpotensi untuk digunakan sebagai rawatan air sisa atau pemulihan ion logam berat yang disasarkan.

Kata kunci: Kapasiti penjerapan; nanozarah; oleat-magnetik; penjerap; silikat-magnetik; teknik mikroemulsi

 

RUJUKAN

Abdelbasir, S.M., Elseman, A.M., Harraz, F.A., Ahmed, Y.M.Z., El-Sheikh, S.M. & Rashad, M.M. 2021. Superior UV-light photocatalysts of nano-crystalline (Ni or Co) FeWO4: structure, optical characterization and synthesis by a microemulsion method. New Journal of Chemistry 45(6): 3150-3159.

Allahkarami, E., Soleimanpour Moghadam, N., Jamrotbe, B. & Azadmehr, A. 2023. Competitive adsorption of Ni(II) and Cu(II) ions from aqueous solution by vermiculite-alginate composite: Batch and fixed-bed column studies. Journal of Dispersion Science and Technology 44(8): 1402-1412.

Bandar, S., Anbia, M. & Salehi, S. 2021. Comparison of MnO2 modified and unmodified magnetic Fe3O4 nanoparticle adsorbents and their potential to remove iron and manganese from aqueous media. Journal of Alloys and Compounds 851: 156822.

Burnase, N., Jaiswal, S. & Barapatre, A. 2022. Metal toxicity in humans associated with their occupational exposures due to mining. In Medical Geology in Mining, edited by Randive, K., Pingle, S., Agnihotri, A. Springer Geology. pp. 127-186.

Chin, A.B. & Yaacob, I.I. 2007. Synthesis and characterization of magnetic iron oxide nanoparticles via w/o microemulsion and Massart’s procedure. Journal of Materials Processing Technology 191(1): 235-237.

Das, A., Bar, N. & Das, S.K. 2023. Adsorptive removal of Pb(II) ion on Arachis hypogaea’s shell: Batch experiments, statistical, and GA modeling. International Journal of Environmental Science and Technology 20(1): 537-550.

de Magalhães, L.F., da Silva, G.R., Peres, A.E.C. & Kooh M.R.R. 2022. Zeolite Application in Wastewater Treatment. Adsorption Science & Technology (9): 2022. doi:10.1155/2022/4544104

Garg, R., Garg, R., Khan, M.A., Bansal, M. & Garg, V.K. 2023. Utilization of biosynthesized silica-supported iron oxide nanocomposites for the adsorptive removal of heavy metal ions from aqueous solutions. Environmental Science and Pollution Research 30: 81319-81332.

Germanos, G., Youssef, S., Farah, W., Lescop, B., Rioual, S. & Abboud, M. 2020. The impact of magnetite nanoparticles on the physicochemical and adsorption properties of magnetic alginate beads. Journal of Environmental Chemical Engineering 8(5): 104223.

Geroeeyan, A., Niazi, A. & Konoz, E. 2021. Removal of basic orange 2 dye and Ni2+ from aqueous solutions using alkaline-modified nanoclay. Water Science and Technology 83(9): 2271-2286.

Hu, J., Chen, G. & Lo, I.M.C. 2005. Removal and recovery of Cr(VI) from wastewater by maghemite nanoparticles. Water Research 39(18): 4528-4536.

Ibrahim, G.M., Alshahrani, S.M., Alosaimi, E.H., Alshahrani, W.A., El-Gammal, B., Fawzy, A., Alqarni, N., Elhouichet, H. & Safaa, H.M. 2024. Adsorption mechanism elucidation of anionic congo red onto modified magnetic nanoparticle structures by quantum chemical and molecular dynamics. Journal of Molecular Structure 1298(Part 1): 13992.

Kalra, A. & Gupta, A. 2019. Recent advances in decolourization of dyes using iron nanoparticles: A mini review. Materials Today: Proceedings 36: 689-696.

Khan, J., Lin, S., Nizeyimana, J.C., Wu, Y., Wang, Q. & Liu, X. 2021. Removal of copper ions from wastewater via adsorption on modified hematite (α-Fe2O3) iron oxide coated sand. Journal of Cleaner Production 319: 128687.

Lei, T., Jiang, X., Zhou, Y., Chen, H., Bai, H., Wang, S. & Yang, X. 2023. A multifunctional adsorbent based on 2,3-dimercaptosuccinic acid/dopamine-modified magnetic iron oxide nanoparticles for the removal of heavy-metal ions. Journal of Colloid and Interface Science 636: 153-166.

Liosis, C., Papadopoulou, A., Karvelas, E., Karakasidis, T.E. & Sarris, I.E. 2021. Heavy metal adsorption using magnetic nanoparticles for water purification: A critical review. Materials 14(24): 7500.

Mahapatra, A., Mishra, B.G. & Hota, G. 2013. Electrospun Fe2O3-Al2O3 nanocomposite fibers as efficient adsorbent for removal of heavy metal ions from aqueous solution. Journal of Hazardous Materials 258-259: 116-123.

Mahdavi, M., Ahmad, M. Bin, Haron, M.J., Namvar, F., Nadi, B., Ab Rahman, M.Z. & Amin, J. 2013. Synthesis, surface modification and characterisation of biocompatible magnetic iron oxide nanoparticles for biomedical applications. Molecules 18(7): 7533-7548.

Mehdizadeh, S., Sadjadi, S., Ahmadi, S.J. & Outokesh, M. 2014. Removal of heavy metals from aqueous solution using platinum nanoparticles/Zeolite-4A. Journal of Environmental Health Science and Engineering 12: 7.

Meng, C., Zhikun, W., Qiang, L., Chunling, L., Shuangqing, S. & Songqing, H. 2018. Preparation of amino-functionalized Fe3O4@mSiO2 core-shell magnetic nanoparticles and their application for aqueous Fe3+ removal. Journal of Hazardous Materials 341: 198-206.

Mengesha, A., Hoerres, A. & Mahajan, P. 2022. Cytocompatibility of oleic acid modified iron oxide nanoparticles. Materials Letters 323: 132528.

Mostafa, M.G., Chen, Y.H., Jean, J.S., Liu, C.C. & Lee, Y.C. 2011. Kinetics and mechanism of arsenate removal by nanosized iron oxide-coated perlite. Journal of Hazardous Materials 187(1-3): 89-95.

Naseem, T. & Durrani, T. 2021. The role of some important metal oxide nanoparticles for wastewater and antibacterial applications: A review. Environmental Chemistry and Ecotoxicology 3: 59-75.

Nassef, H.M., Al-Hazmi, G.A.A.M., Alayyafi, A.A.A., El-Desouky, M.G. & El-Bindary, A.A. 2024. Synthesis and characterization of new composite sponge combining of metal-organic framework and chitosan for the elimination of Pb(II), Cu(II) and Cd(II) ions from aqueous solutions: Batch adsorption and optimization using Box-Behnken design. Journal of Molecular Liquids 394: 123741.

O’Neal, S.L. & Zheng, W. 2015. Manganese toxicity upon overexposure: A decade in review. Current Environmental Health Reports 2(3): 315-328.

Rafiq, S., Wongrod, S. & Vinitnantharat, S. 2023. Adsorption kinetics of cadmium and lead by biochars in single- and bisolute brackish water systems. ACS Omega 8(48): 45262-45276.

Rose, L.C., Suhaimi, H., Mamat, M. & Lik, T.Z. 2017. Synthesis and characterization of oleic acid surface modified magnetic iron oxide nanoparticles by using biocompatible w/o microemulsion for heavy metal removal. AIP Conference Proceedings 1885: 020113.

Storozhuk, L. & Iukhymenko, N. 2019. Iron oxide nanoparticles modified with silanes for hyperthermia applications. Applied Nanoscience (Switzerland) 9(5): 889-898.

Sukmana, H., Bellahsen, N., Pantoja, F. & Hodur, C. 2021. Adsorption and coagulation in wastewater treatment – Review. Progress in Agricultural Engineering Sciences 17(1): 49-68.

Xu, P., Zeng, G.M., Huang, D.L., Feng, C.L., Hu, S., Zhao, M.H., Lai, C., Wei, Z., Huang, C., Xie, G.X. & Liu, Z.F. 2012. Use of iron oxide nanomaterials in wastewater treatment: A review. Science of the Total Environment 424: 1-10.

Yang, Z., Ma, J., Liu, F., Zhang, H., Ma, X. & He, D. 2022. Mechanistic insight into pH-dependent adsorption and coprecipitation of chelated heavy metals by in-situ formed iron (oxy)hydroxides. Journal of Colloid and Interface Science 608(Part 1): 864-872.

Zhou, C., Li, B., Li, Y., Zhao, J., Mei, Q., Wu, Y., Chen, Y., Li, M. & Fan, Y. 2024. A review of graphene oxide-based adsorbents for removing lead ions in water. Journal of Environmental Chemical Engineering 12(1): 111839.

 

*Pengarang untuk surat-menyurat; email: hafiza.ilyana@umt.edu.my

 

 

 

 

 

 

 

           

sebelumnya